
Techniques for Authoring Complex XML Documents

Vincent Quint
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier Cedex, France

vincent.quint@inria.fr

Irène Vatton
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier Cedex, France

irene.vatton@inria.fr

ABSTRACT
This paper reviews the main innovations of XML and con-
siders their impact on the editing techniques for structured
documents. Namespaces open the way to compound docu-
ments; well-formedness brings more freedom in the editing
task; CSS allows style to be associated easily with structured
documents. In addition to these innovative features, the
wide deployment of XML introduces structured documents
in many new applications, including applications where text
is not the dominant content type. In languages such as
SVG or SMIL, for instance, XML is used to represent vec-
tor graphics or multimedia presentations.

This is a challenging situation for authoring tools. Tra-
ditional methods for editing structured documents are not
sufficient to address the new requirements. New techniques
must be developed or adapted to allow more users to effi-
ciently create advanced XML documents. These techniques
include multiple views, semantic-driven editing, direct ma-
nipulation, concurrent manipulation of style and structure,
and integrated multi-language editing. They have been im-
plemented and experimented in the Amaya editor and in
some other tools.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces, Interaction styles ; I.7
[Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages, Stan-
dards, XML

General Terms
Design, Experimentation, Languages

Keywords
XML, authoring tools, structured editing, direct manipula-
tion, compound documents, style languages, CSS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’04,October 28–30, 2004, Milwaukee, Wisconsin, USA.
Copyright 2004 ACM 1-58113-938-1/04/0010 ...$5.00.

1. INTRODUCTION
Authoring techniques for structured documents consti-

tuted an active research area during the second half of the
80’s and the early 90’s [10]. Several experimental systems
such as Grif [7] and Rita [6] were developed and a few pro-
duction tools resulted from that work. Most of them, such as
Author/Editor and ArborText, were SGML oriented. Since
that time, the specific requirements of the Web led W3C
to create XML on the basis of SGML. This new language
contributed strongly to popularize structured documents.
New tools emerged for authoring XML documents, but most
of them were straightforwardly derived from the previous
SGML tools and from their underlying concepts, implement-
ing only the XML features that were already available with
SGML.

The benefits of XML do not consist only in a simplifica-
tion of SGML. They also stem from the new concepts and
languages that were developed specifically with XML. Using
only the SGML techniques to manipulate XML documents
is missing a significant part of the potential advantages from
XML.

In this paper, we identify the major advances in the au-
thoring techniques for structured documents that are made
possible by the XML technology and we illustrate them with
features we have implemented in Amaya and in some other
editors. Amaya [1] is an authoring tool for the Web that
integrates seamlessly editing, browsing and publishing fea-
tures. It focuses on the standards developed by IETF and
W3C to produce valid documents. It is used for maintain-
ing Web sites where conformance to standards is considered
important. It supports several document formats: generic
XML and such XML applications as XHTML for hypertext,
MathML for mathematical expressions, and SVG for vector
graphics (with SMIL animation). It also supports the CSS
style sheet language.

After this brief introduction, the next section gives an
overview of the approaches that are usually taken in differ-
ent editors used to create and edit XML documents. Section
3 reviews the main features offered by XML that differen-
tiates it from its predecessor, SGML. Section 4 constitutes
the main contribution of the paper. It considers the im-
pact of the new features on authoring tools and proposes
some innovative techniques for handling complex XML doc-
uments in an authoring environment. These techniques are
presented in terms of benefits for the user and requirements
for the software engineer. Finally, a conclusion summarizes
the contributions of the paper.

2. USUAL APPROACHES
Many popular XML editors are basically text editors that

are aware of the XML syntax and follow a given DTD or
XML schema. The knowledge of the syntax allows the editor
to help users in the syntactic details and ensures that a
well-formed document is produced. The DTD or schema
is used to check the structure of the edited document and
thus allows the tool to assist the user in producing a valid
document [13] [12]. Usually these tools may follow any DTD
or schema. Formatting, although sometimes possible, is not
the main concern for interaction, the tools focusing often on
syntax and structure. In that perspective, users can usually
see at least two views of their documents, the Source view
showing the XML code and the Structure view displaying
the DOM tree. A third view is often provided, to show a
formated representation of the document, but in many cases,
this view is just a way to preview the document layout and
does not allow the user to really edit.

As opposed to these “generic” tools that can work with
any document type, there are also specialized tools that are
dedicated to a single document type, most often HTML or
XHTML, such as Mozilla Composer or DreamWeaver. The
purpose of these tools is to hide the complexity of struc-
tured documents, by reproducing as much as possible the
behaviour of word processors. They allow naive users to
create and modify a complex document by manipulating a
formatted representation of the document in a view called
the Normal view. They require little knowledge from the
user about structured documents and markup languages.
The tool itself, being tailored for a specific document type,
does not really need a DTD or a schema, as the knowledge
contained in a DTD is already captured in the code of the
tool.

Obviously, the situation is not completely black and white.
There are “generic” tools, such as XMetaL or XMLspy [14],
for instance, that behave like specialized tools for some parts
of structured documents. Tables are the typical case, pro-
vided they follow a well-known model, such as the HTML
or CALS models. If it is the case, the editor provides easy
to use, specialized commands for manipulating table cells,
column and rows. But this ease of use is only available for
a very limited set of sub-languages.

The ideal tool should combine the advantages of both cat-
egories. It should be flexible enough to support any docu-
ment type and XML language, but it should also provide the
kind of user-friendly interface that makes specialized tools
easy to use.

3. NOVEL FEATURES IN XML
The main motivation of W3C for designing XML [5] was

to enable the exchange of a wide variety of documents and
data on the Web in a flexible text format compatible with
SGML. The scope of SGML was broadened to encompass
new types of documents, specifically Web documents. These
documents typically integrate various distributed resources
addressed by URIs (Uniform Resource Identifiers) and are
related to other documents through hypertext links. Distri-
bution and hypertext make a significant change as compared
to many traditional SGML applications.

Another important change is the introduction of names-
paces [4], which opens the door to compound documents.
Namespaces allow an XML document to mix several markup

languages that represent different parts of the document.
These pieces can be nested within each other and grains of
information from different markup languages can be freely
combined, whatever their size. This offers structured docu-
ments a modular approach. Specialized markup languages
can be developed for modelling very precisely each part of
a document specifically, and these specialized languages can
be shared and reused in different contexts.

This feature allows XML to cover a wide range of applica-
tions. A number of XML languages have been developed for
very different types of structured data and documents. In
particular, structured text, which was the main application
area of SGML, represents only a fraction of the numerous
XML applications available now. XML is used for encoding
non-textual information such as vector graphics, mathemat-
ical expressions, synchronized multimedia documents, com-
plex forms, etc., to mention only a few document-oriented
applications. A broad range of components are thus avail-
able and they can be mixed for representing compound struc-
tured documents.

The combination of the Web dimension of XML and its
namespace mechanism offers a number of new possibilities
for complex, distributed documents, where various pieces
in various markup languages can be included within each
other, in a single file or by aggregating multiple distributed
resources included inside each other.

SGML puts the emphasis on validity: every document
must strictly comply with a DTD, which is compulsory for
every kind of processing. XML relaxes this constraint by
introducing the notion of well-formedness, which provides
some flexibility in the processing of structured documents.
This is a significant change, as documents that are supposed
to comply with a DTD can now be processed even when the
DTD is not available. Documents can also exist indepen-
dently of any DTD or schema.

Style is the last important change we consider here, from
the editing perspective. Style was an important issue for
SGML documents, but there were a number of solutions
and even the standard ones were not widely deployed. In
fact, style was an unsolved issue. With XML, only two style
languages are widely accepted and deployed, CSS (Cascad-
ing Style Sheets) [3] and XSL (Extensible Stylesheet Lan-
guage), with separate fields of application but a lot of com-
monality (style properties, for instance are the same in both
languages). Style plays an important role in documents,
and that is probably one of the key differences with semi-
structured data. Focusing this article on documents, we pay
special attention to style and its role in editing XML docu-
ments.

4. EDITING XML DOCUMENTS
With all these new features, traditional methods for edit-

ing structured documents have to be revisited. This sec-
tion analyzes the impact of these features on editing tech-
niques and proposes some new solutions that were validated
in Amaya. It focuses on Web documents, non-textual infor-
mation, flexible structure manipulations, compound struc-
tured documents, and style.

4.1 Editing Web documents
As stated above, XML was designed for the Web. An

XML authoring tool should therefore be somehow related
with the Web. Given the key role of URIs in the Web archi-

tecture [8] and in XML technologies, an XML tool should at
least handle URIs for what they really are, i.e. resource iden-
tifiers, and not as meaningless character strings. It should
also offer means to handle hypertext links, both when they
relate different parts of the same document and when they
cross document boundaries to point to external documents
or resources. Links are part of many XML languages, such as
XHTML, SVG, and SMIL, not to mention XLink, an XML
language dedicated to hypertext links. For that reason, links
also require some dedicated features in an authoring envi-
ronment.

To fill this requirement, Web access is needed. Being able
to access the Web and to navigate, an authoring environ-
ment can help the user locate a given resource. The user
can then check that the resource exists and make sure it is
really what s/he meant. If the tool itself is handling the
resource, it can manage its URI, relieving the user from the
burden or typing or copying the URI, thus avoiding many
errors.

We have developed Amaya following this approach. This
Web tool integrates seamlessly a browsing functionality with
the authoring features. It allows the author to browse the
Web as well as local files and to display the resources of
interest on the screen. In addition, when an element in an
XML document has an xml:id attribute, it is considered as
the potential target of hypertext links, and on user’s request,
it is displayed with a target icon, that can be clicked to set
the end of a link.

Then, entering an URI or creating a link in the XML
document being edited is done simply by clicking the cor-
responding resource or element on the screen. As the tool
has itself downloaded the resource, it knows its URI and
can copy it safely and automatically for the user. More-
over, the document being edited can be used to navigate
the Web, if it contains some links or embedded resources.
With this mechanism, documents are edited in their actual
context and users are confident that the linked resources are
the right ones.

The editor can directly save a document whatever its lo-
cation thanks to the connection to the Web. From the user’s
viewpoint, there is no difference between local and remote
documents: all documents are saved with the same com-
mand. Depending on its URI, the document is written on
the local disk or through the Web onto a remote server. All
resources are then seen in a homogeneous space that can
be accessed in read and write mode transparently. XML
documents are treated as Web resources.

4.2 Non-textual information
For many XML applications, editing a document through

its source code is not appropriate. Source editing may work
with textual documents, but with many of the new XML
applications, this is simply not an option. One can not
practically edit SVG graphics made of many shapes, just
by editing the coordinates of their control points between
pointy brackets. One can not safely manipulate the time
dependencies of a SMIL multimedia document by editing
the source of a structure combining par and seq temporal
operators as well as their attributes.

The idea here is to allow users to edit documents accord-
ing to the semantics of the XML languages involved. The
semantics of SVG, for instance, is about 2D graphics. Users
should be able to interact graphically with the geometric

Figure 1: An animated SVG document in Amaya

shapes themselves, as opposed to their textual representa-
tion in XML. In the same way, the time structure of a SMIL
document should be presented to users in a self-explanatory
form that clearly shows how the time periods of all media
objects are related with each other. Users should be able to
manipulate these time periods in a natural way. Again, the
idea is to handle the elements of an XML structure accord-
ing to their semantics, regardless of the underlying XML
structure or syntax.

In the area of human-computer interaction, this is the
usual approach of direct manipulation [11], where users feel
that they are directly controlling the objects of the appli-
cation, without any intermediary. This approach has been
taken in Amaya. SVG graphics are manipulated as graph-
ical objects, with the same kind of interface as in drawing
programs. Figure 1 shows a simple animated SVG docu-
ment which contains two instances (use elements) of the
same polygon that represent letters W and M, plus a group
(g element) containing two closed paths that represents let-
ter @. Three views are open. The top left window shows
the Normal or Formatted view, where direct manipulation
of graphics is possible. The control points of letter M are
highlighted. They allow the user to use the mouse for mov-
ing or changing the shape (defined by attribute points) of
the polygon.

Likewise, the time dimension of SMIL can be manipulated
through a timeline, where each object with a temporal be-
haviour is represented by a bar whose length and position
reflect the duration and start time of the object. The length
and position of these bars can be modified with the mouse
to change the synchronization of the corresponding object.

Actually, the timeline representation has been validated
in two different authoring tools, Amaya and LimSee. In
Amaya it represents the time dimension of all animated SVG
elements. Thanks to the modularity of XML, the SVG lan-
guage uses the animation module from the SMIL language.
Document instances can then use SMIL animate elements
within SVG elements to make them alive (see the Struc-

ture view which shows the DOM tree in the window on the
right of Figure 1). The Timeline view (Figure 1, bottom left
window) collects all animate elements in a document and
displays them with different colors representing the prop-
erty they animate (color, geometric transformation, motion,
other).

LimSee [9] is an authoring environment dedicated to SMIL
documents. It also provides a timeline, but this view is built
in a different way. As time information in a SMIL docu-
ment is hierarchically organized and constitutes the body of
a document, the tree of the seq and par elements is also
represented on the timeline in LimSee. In both tools, the
user can move and resize the time bar to update such tem-
poral attributes as begin, end, duration, etc. The user can
also move a slider to observe the document at a given date
(Figure 1 shows the document at 10s. from its beginning).
This kind of manipulation has proven very useful, if not
necessary, to manipulate efficiently the complex structures
representing time in multimedia XML documents.

4.3 Flexible structure manipulation
Even with textual documents, high level manipulations

make sense. Most XML editors offer context-sensitive menus
or palettes that propose to the user all the elements that can
be inserted before or after the current element. Although
these menus are generally helpful, they are often considered
by users as very constraining, while in many cases more
flexible and efficient interaction can be provided. We have
experimented with two different techniques that can be used
in addition to the usual contextual menus: the Enter key,
and automatic transformations.

4.3.1 Using the Enter key
In a plain text editor the Enter key is the main tool for

structuring a document into lines and paragraphs. Pressing
this key once breaks an existing line or creates a new line
when the current position is at the end of a line. Pressing
the Enter key multiple times introduces empty lines which
indicate more important breaks in the sequence of text. We
propose a mechanism based on this principle to structure
XML documents with textual contents: the Enter key is
used to break elements or to create new elements in the
structure of an XML document.

The Enter key acts on the current selection. The current
selection may be either a position in the document (a caret),
with no content, or some structural element.

1. If a structural element is selected, the Enter key cre-
ates a new empty element of the same type after the
selected element, and the selection, which becomes a
position, is put within the new empty element.

2. If the selection is a position within some character
string, the Enter key simply splits the current ele-
ment at that position, replacing it by two elements,
and putting the current position at the beginning of
the second element. The choice of the element to be
broken is based on the DTD: it is the first ancestor
that accepts a following sibling; the type of the second
element is also decided according to the DTD.

3. If the selection is a position at the beginning or at the
end of a non empty element, a new, empty element is
created before or after that element, respectively. The

type of the empty element to be created is defined by
the DTD, as well as its level in the structure. It is a
sibling of the first ancestor of the current position that
accepts a sibling. The current position is then put in
the new empty element.

4. If the selection is a position within an empty element
(for instance a caret in an empty XHTML paragraph
that is a child of a list item li), the Enter key first
deletes this element (the paragraph). If this is not the
first nor the last child of its parent (if it is a paragraph
in the the middle of the list item), the first ancestor
element that can be repeated according to the DTD is
split at that position (the list item is divided into two
list items). Then, in all cases, a new empty element,
whose type is chosen according to the DTD (an empty
list item), is created after the first part (the first list
item resulting from the split) if there was a split, after
the first repeatable ancestor otherwise. Finally, the
current position is put in the new empty element (list
item).

To continue the analogy with plain text editors, the action
of the Backspace key is the opposite of the action of the
Enter key, and is not detailed here. While the Enter key
can split elements, the Backspace key can merge elements.

As an example, suppose we have an XHTML ol (ordered
list) element containing three li (list item) elements. Sup-
pose the current selection (the caret, represented by a ver-
tical bar ’|’) is inside the second list item, at the beginning
of the second sentence of this item. The internal structure
of the document is as follows:

Aaaaa

Bbbbb. |Cccccc

Dddddd

Pressing Enter splits the content of the item, creating
within the item a new paragraph which contains the sec-
ond sentence (case 2):

Aaaaa

Bbbbb.

<p>|Cccccc</p>

Dddddd

Pressing Enter a second time creates a new empty paragraph
between the two parts of the list item (case 3):

Aaaaa

Bbbbb.

<p>|</p>

<p>Cccccc</p>

Dddddd

If this is what you want, just go ahead and type the con-
tent of this paragraph. Otherwise, press Enter a third time.
The empty paragraph is deleted, the list item is split into
two list items and a new, empty list item is created in be-
tween (case 4):

Aaaaa

Bbbbb.

|

Cccccc

Dddddd

If this is what you want, type the content of this new
list item. Otherwise, press Enter a fourth time: the list is
split into two lists and a new empty paragraph is created in
between (case 4 again):

Aaaaa

Bbbbb.

<p>|</p>

Cccccc

Dddddd

We have validated this principle in Amaya. The expe-
rience has shown that some complementary features may
greatly improve efficiency. The first improvement is achieved
by providing the algorithm summarized above with a bit
more information. In some cases, the DTD allows different
types of elements to be inserted in the document structure
at a given position. A choice has to be made by the user.
A pop-up menu proposing all the possible types is not a so-
lution, as the main idea is to allow structure manipulations
to be done quickly, in a few keystrokes. A configuration file
associated with the DTD is used instead. It indicates what
type of element should be created by default when several
options are available. As an example, for the XHTML DTD,
this file says that a paragraph (p element in XHTML) should
be created rather than a heading (h1, h2, h3, etc.) or a list
(ol, ul, dl), when there is a choice between all these ele-
ments. The other elements, which are less frequently used
than paragraphs, can be created too (see section 4.3.2), but
they require a few more keystrokes. In Amaya, the con-
figuration file is created manually. It could also be built
automatically by counting the number of occurrences of ele-
ments in a representative corpus or be counting the number
of elements created by a user.

Another important feature needed to make the Enter key
effective is structure selection. A proper selection has to
be made to take advantage of the Enter key. Selecting a
position is done in the traditional way, either by clicking the
position on the formatted document or by moving the caret
(which represents the current position) with the usual arrow
keys. Selecting a structural element is made easy by the Esc
(or F2) key which selects the parent element of the current
selection in the document structure. Thus, the user moves
the caret to the element of interest, and by hitting this key
several times, s/he can travel the tree structure towards the
root, stopping when the desired element is reached.

This principle has proven very efficient for editing struc-
tured text, while preserving the validity of the edited doc-
ument. Even if the algorithm may seem a bit complicated,
doing different things in different contexts, its behaviour on
most textual document types looks very natural. In addi-
tion, users can manipulate the document structure quickly,

directly from the keyboard, with very few keystrokes. The
algorithm works well for various types of documents, and
requires very little adaptation for each type of document.
Only the simple configuration file mentioned above has to
be provided in addition to the DTD. This algorithm has also
been successfully used for structures like mathematical ex-
pressions or tables. For instance, in MathML, a fraction can
be split into two fractions very simply, or in XHTML tables,
columns and rows can be added as simply as paragraphs or
list items. As a consequence, the user interface is homo-
geneous. The same commands can be used to perform the
same kind of operation on very different objects, and these
commands are just an extension of a well known command
for text files. The user has only to learn how to use a few
powerful commands that work the same in many situations.

However, it should be recognized that not everything can
be done that way. For instance, this editing mode does not
help much when manipulating structured graphics in SVG.
That is the reason why other editing modes are necessary.

4.3.2 Structure transformations
Structure transformations constitute a powerful way to

manipulate XML documents, especially in an authoring tool,
where users frequently change the structure of their docu-
ments. Structure transformations are involved in the editing
commands discussed above: splitting and merging elements
are transformations. From the user’s perspective however,
transformations discussed in this section are different, be-
cause they require the user to actually choose the element
types, while it is the system that decides when using the
Enter key.

It should be possible for the author to set the selection (a
position, an element or a character string) and then ask the
system to create an element of a given type there, simply by
choosing the type in a menu or with a keyboard shortcut.
Like the Enter key, the choice of an element type may lead to
different actions on the structure, depending on the current
selection:

1. if the selection is a position in an empty element, an
element of the chosen type is created as a child of the
empty element, if this is allowed by the DTD. If it is
not allowed, the editor tries to create a series of de-
scendents from the existing element to an element of
the chosen type, again based on the DTD (in XHTML,
an example is the creation of a dt element when the
selection is in an empty div element: a dl is created
in the hierarchy between the requested dt and the ex-
isting div). If this fails too, the editor tries to replace
the empty element by an empty element of the chosen
type.

2. if the selection is a position in a character string, the
desired element is simply created at this position, if it
can be inserted there legally. Otherwise the element(s)
containing the current position are split, like in case
2 of the Enter key, and the desired element is created
between the two parts.

3. if the selection is some character string, the new el-
ement replaces the character string in the structure,
and the character string becomes its contents. The
DTD may forbid this change. In that case, the an-
cestor elements are split until the new element can be

inserted between the two parts of the split element. An
example of this in XHTML is when a character string
is selected in the middle of a paragraph (p element)
and the user wants to create a h2, which is not al-
lowed as a child of a p. The paragraph is then divided
into two paragraphs and a h2 containing the selected
text is created between the two paragraphs. The same
principle applies when a sequence of character strings
and elements is selected.

4. if a structural element is selected, or a sequence of
structural elements, their types are simply changed
into the desired type. In XHTML, a p element can
be turned into a h2 element, for instance. If this is
not allowed by the DTD, an element of the desired
type is created, wrapping the selected element(s). In
XHTML, a sequence of a heading (h1, h2, h3, etc,)
and some paragraphs (p elements) and lists (ul, ol,
dl) can thus be grouped into a division (div). If this
fails, more complex transformations have to be made.

Although very different structure manipulations are in-
volved behind the scene, all these actions are seen by the
user as the same command: create this type of element here,
with this contents.

This command has been successfully implemented and
validated in Amaya. To make case 4 useful, a lightweight
transformation language [2] is used to handle more com-
plex transformations. It is very close to XSLT, regarding
its functionality, but with a more compact syntax. XSLT
would certainly do the job, but this language was devel-
oped before XSLT was available and it was never replaced.
A transformation sheet has to be written to specify all the
transformations a user may need when manipulating struc-
tures in a given DTD. The editor looks in that sheet and
executes the first transformation that matches the current
selection and that generates the desired type. As an exam-
ple, in XHTML, one can transform a sequence of paragraphs
(p elements) into a list (ul or ol) of items (li), or conversely.

This command is considered very convenient by users. It
solves indeed a significant problem of structured editors.
The user no longer feels constrained by a tool that offers
only contextual menus with only a few elements types for
creating new elements. On the contrary, with this method,
any element type defined by the DTD may be chosen at any
time, and the tool makes its best efforts to create the desired
element for the user.

Initially conceived for editing textual structures, this com-
mand demonstrated some advantages for editing other types
of structures. In Amaya, it is extensively used for editing
mathematical expressions in MathML. It allows any con-
struct to be freely inserted anywhere, and many structures
to be transformed very efficiently.

Another important advantage of this approach, is that it
does not require the structure of an XML document to be
built top down. One can start by typing plain text that is
simply structured as a sequence of paragraphs, using only
the Enter key as a structuring command. A hierarchical
structure can be added afterwards. One can change the type
of some paragraphs, to make section headings for instance.
One can transform some sequences of paragraphs into lists.
These elements can then be grouped into divisions, and so
on, just by selecting the concerned elements and choosing
an element type from a menu. This simple approach is very

frequently used for creating and editing XHTML documents,
for instance.

It is worth noting that, while it is very flexible, this pro-
cess does not break the validity of the document. All ba-
sic operations involved in the process (the four operations
listed above) are controlled by the DTD and always produce
a valid structure. If the DTD does not allow one transfor-
mation to be performed, the command is simply aborted.
Therefore, any sequence of these operations preserves the
document validity.

4.4 Editing compound structured documents
In the previous section, we have seen how to manipulate

different kinds of XML structures, but these structures are
considered in isolation. However, when manipulating real
documents, structured objects are usually embedded in a
larger context: mathematical notations appear inside para-
graphs; drawings are often part of some larger document, as
well as tables or forms. So, to fully address the real issue we
have to consider editing compound structured documents,
i.e. the type of documents made possible by XML names-
paces.

4.4.1 Namespaces and transclusion
There are two different ways to make compound docu-

ments. One is to build “monolithic” files where pieces in
different markup languages are tightly integrated thanks to
namespaces. This is for instance well suited for a scientific or
technical document that includes a number of mathematical
expressions and drawings. Another way to make compound
documents is to take advantage of the hypertext nature of
the Web, and to separate various pieces of a document in
external resources. A typical example is a document that
integrates a few drawings that are also used in some other
documents. The external resources can thus be shared. De-
pending of the application, one approach or the other can be
used. Moreover, both can be used simultaneously: equations
may be part of the document itself, to avoid the burden of
managing a large number of small files, while some complex
animated graphics may be left as a separate resource and
reused by other documents.

To allow users to take advantage of both solutions, an au-
thoring environment should be able to handle a monolithic
structure and a transclusion mechanism as well. Transclu-
sion is actually part of many XML languages and should
then be supported anyway to handle these languages prop-
erly. XHTML, for instance, uses the object element to
include any external Web resource, or the img element to
embed various types of images, including images in XML
formats such as SVG. SVG, in turn, can include other re-
sources by using the foreignObject element.

We have experimented both solutions in Amaya. On the
one hand, the internal representation of XML documents, a
DOM tree, has been implemented in such a way it can ac-
commodate nodes from different namespaces in the same
tree. On the other hand, a transclusion mechanism im-
plements such “embedding” elements as object, img, or
foreignObject, but transclusion is only used for display
purpose. It has been considered too much confusing to al-
low the user to edit embedded elements in their embedding
context. The tree representing the external resource is in-
serted in the DOM tree as a child of the embedding object,
but it can not be edited, although the user can ask the ex-

ternal resource to be opened and edited as a separate doc-
ument (Amaya can edit several documents simultaneously).
Doing so, users can see the various resources in the way
they are supposed to be seen, but they edit them as sep-
arate resources, what they actually are. This also avoids
any ambiguity when saving a document. If several resources
are embedded in the saved document, which ones should be
saved, and where?

4.4.2 Views
Structured document editors usually propose several views

of a document, displaying the same structure from differ-
ent perspectives. We have seen in section 4.2 that, to of-
fer direct manipulation, additional, specialized views are re-
quired, where structured objects are presented and can be
manipulated according to their own semantics. As each of
these specialized views is strongly dependent on the applica-
tion semantics, several such views are needed when multiple
XML languages are involved in a single document.

The usual Normal, Structure and Source views are generic;
they apply to any XML application. They make sense for
all parts of a compound XML document. However, each
specialized view is meaningful only for the parts belonging
to a given markup language. While the ones can display
the whole document, the others have to show only some ob-
jects included in the document and are not needed when
a document does not contain objects of the corresponding
language.

The concept of multiple views is implemented in Amaya,
with the generic and specialized views. The Timeline view
mentioned in section 4.2 is a typical example of a specialized
view that is useful only for some objects, animated SVG
graphics. By displaying all animate elements contained in
the document, it gives an overall idea of how the document
is animated, even when animated graphics are interspersed
in various parts of the same document.

Another specialized view is the ToC view for XHTML.
It displays all headings (h1, h2, h3...) from the XHTML
namespace that appear in a document, thus showing a table
of contents. Here again, the idea is to give an overview of the
document, by displaying all its section headings. This view
is also used to move quickly across the document, thanks to
the “synchronization” of all views: when clicking the repre-
sentation of an element in a view, the document is automat-
ically scrolled in all other views, to show the representation
of the same element.

When using several XML languages, a number of views
may be necessary to show and edit all aspects of a compound
document, and this could become confusing. To avoid such
a confusion, Amaya allows users to open and close views
at any time. Amaya can also merge several views and dis-
play them in a single window. As an example, a document
that combines structured text in XHTML, vector graphics in
SVG and mathematics in MathML, may be manipulated in
a single window, the Formatted (or Normal) window, which
shows formatted text, real graphics and formatted math,
thus providing the user with a natural and readable rep-
resentation of the document. In this window, text can be
manipulated as explained in section 4.3, graphics can be
edited graphically, and math can be written in an efficient
way too. Additional views may be open only when neces-
sary, to see some particular aspects of the document or to
perform some specific operations. A Timeline view is open

to animate graphics, a ToC view to move quickly through
the document, a Structure view to control the embedding
elements, etc.

Specialized views play an important role in the under-
standing of the actual document structure. To reinforce that
feature, they show in the same way elements that are part
of a monolithic document and elements that are embedded
by transclusion.

4.4.3 Editing modes
For complex compound documents, several editing modes

have to be provided by the authoring environment, to allow
users to work efficiently on all parts of a document. Multiple
editing modes are required not only to face complexity, but
also to take advantage of all aspects of the XML language.
To identify the needed editing modes, it is worth considering
the different levels of the XML language itself.

At the lowest level, an XML file is simply a flow of char-
acters with a syntax that represents basically elements, at-
tributes, and contents. At the next level, this syntax de-
scribes a tree structure: elements are nested, they have at-
tributes, and contents constitute the terminal elements of
the tree. This corresponds to well-formed documents. When
a DTD or a schema enters into play, the tree structure is not
only constrained by the rules of well-formedness, but also by
the DTD or schema. This is the third level. The fourth and
last level is the semantics level. Elements and attributes
not only have a name and a position in a tree structure as
indicated by the DTD or schema, but they also have a mean-
ing and play a role in the document. This is not formally
described, but usually explained in the documentation of
the document type. Application semantics add more con-
straints on the way to combine elements and attributes in a
meaningful structure.

When editing a document, it may be useful to consider it
at these different levels of abstraction, and a specific editing
mode could be associated with each level to perform different
kinds of operation:

1. source code editing, to manipulate an XML file as plain
text,

2. free structure editing, to manipulate the document as
an unconstrained tree,

3. schema-driven editing, to manipulate the document
tree according to the DTD or schema,

4. semantics-driven editing, to take into account the spe-
cific aspects of the XML application.

All these editing modes have been implemented in Amaya.
To make them effective, they are all available simultaneously
and the user is free to choose the commands of any mode at
any time, without any explicit mode switch.

In the first editing mode, the user has to know the XML
syntax, the structural constraints of the various XML lan-
guages, as well as their semantics. In addition to text edit-
ing, the editor provides syntax and structure checking on
user’s request. This mode is used by expert users when
other modes are not suited to the task at hand. The Source
view is well suited to this editing mode. In this view the
XML syntax is highlighted for easier editing, and the user
can make any change freely. At any time, a special command
may be called that parses the modified source file, rebuilds

the DOM tree, reformats the document and redisplays it in
all open views. If there is an error, the parser stops immedi-
ately, as required by the XML specification, pointing at the
error in the Source view.

In free structure editing mode, the XML syntax is handled
by the tool, but the user still has to know the structural con-
straints and the semantics of the markup language. Amaya
does not need or use any DTD or schema in this mode. For-
matting, performed by the tool on the basis of CSS style
sheets, helps the user to visually check the document struc-
ture through formatting semantics. The view of choice for
this mode is the Structure view, which displays a DOM tree.
Every change done in this view is immediately reflected in
the other views, and especially in the Formatted view. The
Normal (or Formatted) view can also be used, as well as the
structure manipulation commands presented in section 4.3,
but validity is not checked, as there is no DTD.

In the schema-driven editing mode the user manipulates
the document tree under the control of the tool. Amaya
handles both the syntax and the structure, but the user has
to know the semantics of the markup languages. The editor
follows the DTD of each language. It creates only valid
elements and attributes that are allowed in a given context.
This is the mode in which the editing commands presented
in section 4.3 are the most useful. This mode can be used
for any markup language, like the previous two modes.

The last mode helps the user to manipulate structured el-
ements according to their semantics. The Formatted view is
well suited to this kind of interaction, as well as all the spe-
cialized views (which are often merged with the Formatted
view). In this view, graphics is just manipulated as graphics,
math as math, time as time (through a graphical metaphor).
Full support is provided only for some languages, whose se-
mantics are implemented in the editor, both in its format-
ting part and in its structure manipulation part. This al-
lows Amaya to offer specific functions for editing efficiently
XHTML tables, structured SVG graphics, complex math-
ematical expressions, SMIL animations, etc. according to
their own semantics. This mode also enables sophisticated
formatting of these elements in the main view, which gives
users the feeling that they are manipulating the document
directly, making the editor very easy to use, and relieving
users from the details of the structure and the markup.

Semantics-driven editing requires specific code for imple-
menting high-level editing operations. Therefore, it can be
provided only for a few predefined languages, but some be-
haviours may be shared by several languages, or several
parts of the same language. This is achieved in Amaya
by associating some predefined editing behaviours with ele-
ment names. Examples of shared behaviours are the com-
mands used for editing XHTML tables and MathML ma-
trices, whose structures are very close to each other, or the
commands for setting hypertext links in several languages
(XHTML, SVG, XLink) simply by pointing and clicking (see
section 4.1).

4.5 Editing with style
The CSS style language plays an important role in edit-

ing complex documents. Style is an excellent way to let a
user grasp the document structure. Although several XML
languages allow some style properties to be included in the
document itself through a style attribute, this is not consid-
ered good practice, and style information should be provided

by separate style sheets, in external resources that are linked
to the XML document. It is then easy to change the style
of a document globally, just by associating different style
sheets. Taking advantage of this mechanism, different style
sheets can be specified to ease different tasks. In particular,
style sheets can be designed specifically for the editing task.
By showing very clearly all aspects of the document struc-
ture, they can help the user perform the editing task in the
Formatted view.

It is important that an authoring tool be able to display
the document under work with different style sheets, and
the user should be able to develop new style sheets that
fit his/her particular needs and preferences. Amaya allows
the author to play freely with CSS style sheets. It offers
a set of commands for disabling and enabling style sheets
temporarily, to unlink a style sheet that is already associated
with the document or to link a new style sheet. All these
commands redisplay the document in the Formatted view
according to the style sheets that are effective at that time.
This is very efficient for choosing the right style sheet and
for changing style sheet on the fly.

The fact that all objects included in a document, by tran-
sclusion or directly, are part of the same DOM tree, allows
style sheets to apply to the document as a whole. Inheri-
tance and cascading work on all parts of a document. If the
font size, for instance, is changed on the document root, all
included drawings and equations are changed in the same
way as the rest of the document.

CSS is not only supported for editing and formatting com-
pound documents. Amaya also provides functionality for
creating, modifying and debugging style sheets. This func-
tionality is fully integrated with the other editing features,
thus allowing users to edit document content and structure
at the same time as style, if they want to. This CSS editing
functionality is available through a point-and-click interface
for the most usual style properties, and through source code
editing for all properties.

An interesting aspect of the CSS editing functionality in
Amaya is debugging. The CSS parser reports errors with
clickable messages that point to the relevant part in the er-
roneous style sheet, to help users to fix syntactic errors. But
errors may also come from a complex combination of rules
from several style sheets that finally set some unexpected
style values. In addition, due to cascading and inheritance,
style sheets for several markup languages may interact. In
that case the difficulty is to locate the rule that was really
selected by the cascading and inheritance processes. For
that purpose, the user may select the element that looks
strange and ask Amaya about the CSS rule that has set a
given property. Amaya then shows what rule, in what style
sheet, has set the value. This has proven very helpful for
debugging complex sets of style sheets with sophisticated
selectors.

5. CONCLUSIONS
In this paper we have reviewed some advances of XML as

well as their impact on the techniques for editing structured
documents. To take advantage of the new features brought
by XML, we have made some proposals for enhancing XML
editors and we have experimented these proposals, in par-
ticular in the Amaya Web editor.

The first set of proposals consists in making an XML au-
thoring tool Web-aware. This improves significantly the us-

age of the Web related features of XML, and allows XML
documents to be better shared and reused over the Web.

Another set of proposals is related to interaction modes
and editing commands. We propose to go beyond the tradi-
tional context-sensitive menus or palettes for creating new
elements in XML documents. We introduce faster and less
constrained commands based on simple algorithms that rely
on the DTD and on very little additional information. We
also propose several modes of interaction that take into ac-
count the various abstraction levels of XML. Finally we ex-
tend structure editing by adding some semantics from the
markup languages to provide the user with powerful and
meaningful commands.

The convenience of the new editing commands is enhanced
by the various views that are offered to users. With spe-
cialized views in addition to the usual views, users better
comprehend the structure of a document and interact more
easily with it.

The last proposals are in the area of integration. The idea
is to handle compound documents by integrating the author-
ing features needed to process the different parts. This is
achieved by maintaining a single internal representation of
a compound document in a unique DOM tree. We also pro-
pose to integrate a style editing functionality with structure
manipulation to give users the power of handling one more
facet of structured documents in a consistent environment.

All editing techniques presented in this paper have been
used and validated by the many users of Amaya. Being
developed as an open source project since 1997, Amaya has
benefited from an extensive feedback from its users. The
features reported here have all been implemented during the
last few years and then evaluated by the users. Many of
these features, if not all, have been refined over the time
thanks to the comments of the user community.

6. ACKNOWLEDGEMENTS
We are grateful to W3C for their support and contribution

to the development and distribution of Amaya. We also ac-
knowledge the valuable participation of a number of people
in the work presented in this paper. In particular, we thank
Laurent Carcone, Paul Cheyrou-Lagrèze, Pierre Genevès,
Ramzi Guétari, Stéphane Gully, Jose Kahan, Daniel Veil-
lard, and Daniel Weck. The whole Amaya community is
acknowledged for their valuable contribution to the evalua-
tion of the software.

7. REFERENCES
[1] Amaya at W3C. http://www.w3.org/Amaya/.

[2] S. Bonhomme and C. Roisin. Interactively
restructuring html documents. Computer Networks
and ISDN Systems, 28(7-11):1075–1084, 1996.

[3] B. Bos. Cascading style sheets home page. Technical
report, http://www.w3.org/Style/CSS/.

[4] T. Bray, D. Hollander, A. Layman, and R. Tobin.
Namespaces in xml 1.1. Technical report, W3C
Recommendation,
http://www.w3.org/TR/xml-names11/, 4 February
2004.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible markup language (xml)
1.0 (third edition). Technical report, W3C
Recommendation,
http://www.w3.org/TR/REC-xml/, 4 February 2004.

[6] D. D. Cowan, E. W. Mackie, G. M. Pianosi, and
G. de V. Smit. Rita–an editor and user interface for
manipulating structured documents. Electronic
Publishing, 4(3):125–150, April 1991.

[7] R. Furuta, V. Quint, and J. André. Interactively
editing structured documents. Electronic Publishing,
1(1):19–44, April 1988.

[8] I. Jacobs. Architecture of the world wide web, first
edition. Technical report, W3C Working Draft,
http://www.w3.org/TR/webarch/.

[9] LimSee2. http://wam.inrialpes.fr/software/limsee2/.

[10] V. Quint. Systems for the manipulation of structured
documents. In J. André, R. Furuta, and V. Quint,
editors, Structured Documents, pages 39–74.
Cambridge University Press, 1989.

[11] B. Shneiderman. Direct manipulation: A step beyond
programming languages. IEEE Computer,
16(8):57–69, 1983.

[12] M. Sifer, Y. Peres, and Y. Maarek. Browsing and
editing xml schema documents with an interactive
editor. In Proceedings of DNIS 2003, LNCS 2822,
pages 97–111, September 2003.

[13] Xeena at Alphaworks.
http://www.alphaworks.ibm.com/tech/xeena/.

[14] XML Spy. http://www.xmlspy.com/manual/.

